_ プレプリント確認状況:arXiv:math 1月4日分まで、arXiv:quant-ph 5月31日分まで、IACR ePrint:2012/130まで
_ ↑ついにarXiv:mathのチェック状況が2012年に追い付いた。感慨深い。
_ 気になった論文その1:Asymptotical behaviour of roots of infinite Coxeter groups I
(Christophe Hohlweg, Jean-Philippe Labbé, Vivien Ripoll, arXiv:1112.5415v1)
Let W be an infinite Coxeter group. We initiate the study of the set E of limit points of "normalized" positive roots (representing the directions of the roots) of W. We show that E is contained in the isotropic cone of the bilinear form B associated to a geometric representation, and illustrate this property with numerous examples and pictures in rank 3 and 4. We also define a natural geometric action of W on E, and then we exhibit a countable subset of E, formed by limit points for the dihedral reflection subgroups of W. We explain that this subset can be built from the intersection with Q of the lines passing through two positive roots, and we establish that it is dense in E.
その2:Alternating subgroups of Coxeter groups and their spinor extensions
(O. V. Ogievetsky, L. Poulain d'Andecy, arXiv:1112.6347v1)
Let $G$ be a discrete Coxeter group, $G^+$ its alternating subgroup and $\tilde{G}^+$ the spinor cover of $G^+$. A presentation of the groups $G^+$ and $\tilde{G}^+$ is proved for an arbitrary Coxeter system $(G,S)$; the generators are related to edges of the Coxeter graph. Results of the Coxeter--Todd algorithm - with this presentation - for the chains of alternating groups of types A, B and D are given.
分野にMathematical Physicsが入っているのが気になる。どんな応用がある話なんだろうか。
その3:On counterexamples in questions of unique determination of convex bodies
(Dmitry Ryabogin, Vlad Yaskin, arXiv:1201.0544v1)
We discuss a construction that gives counterexamples to various questions of unique determination of convex bodies.
_ 昨日書いた3/14と.214の話を妻に話したら好評だった。ああいう話を面白がってくれる人でよかったなぁと思う。
最近のツッコミ↓