_ プレプリント確認状況:arXiv:math 1月10日分まで、arXiv:quant-ph 5月31日分まで、IACR ePrint:2012/130まで
_ 気になった論文:A Statement in Combinatorics that is Independent of ZFC (an exposition)
(Stephen Fenner, William Gasarch, arXiv:1201.1207v1)
It is known that, for any finite coloring of the naturals, there exists distinct naturals $e_1,e_2,e_3,e_4$ that are the same color such that $e_1+e_2=e_3+e_4$. Consider the following statement which we denote S: For every $\aleph_0$-coloring of the reals there exists distinct reals $e_1,e_2,e_3,e_4$ such that $e_1+e_2=e_3+e_4$?} Is it true? Erdos showed that S is equivalent to the negation of the Continuum Hypothesis, and hence S is indepedent of ZFC. We give an exposition of his proof and some modern observations about results of this sort.
エルデシュが証明したと書いてあるけど、エルデシュ=角谷の定理とかいう定理と関係する話なのかなぁ。
最近のツッコミ↓